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Background 
 
Scientific research relies on our ability to simulate scientific phenomena. From 
understanding how biological systems interact to modelling the evolution of the 
universe, simulations allow us to predict properties, test hypotheses, and explore 
scenarios that might be di=icult to investigate experimentally. Many of the physical 
systems we are interested in studying today exhibit strongly multi-scale phenomena. 
These systems are characterised by their complex interactions across multiple spatial 
and temporal scales, for example, the interaction of clouds with atmospheric 
circulation in global climate models, or the formation of hierarchical dark matter 
structures. 
 
Accurately carrying out multi-scale simulation poses a significant challenge, as it 
requires sophisticated models that can correctly capture these interactions. Moreover, 
the computational cost of traditional numerical simulation (such as finite di=erence 
and finite element modelling) can be immense, requiring the use of supercomputers for 
each simulation. 
 
In recent years, the field of scientific machine learning has o=ered new ways of 
overcoming these challenges [1]. Physics-informed neural networks (PINNs) [2,3] are 
a popular way to carry out simulations using neural networks. In contrast to traditional 
numerical methods, they do not require complex simulation meshes and they can 
easily incorporate observational data to learn about interactions. However, using PINNs 
out-of-the-box comes with significant challenges; they can be computationally 
expensive to train and often struggle with issues such as spectral bias. 
 
Our recent work [4,5,6] showed that PINNs can carry out multi-scale simulation 
e=ectively by combining them with domain decomposition and multilevel modelling. 
Domain decomposition allows the global simulation problem to be decomposed into 
smaller, easier-to-solve problems, whilst multilevel modelling provides better 
communication between multi-scale interactions. 
 



 
 

Figure 1: Multi-scale simulation with physics-informed neural networks. The simulation 
works by dividing the modelling domain into many subdomains, placing separate neural 
networks in each subdomain, and training the networks in parallel using a physics-
informed loss function. Example shown is using our method to simulate seismic waves 
in an earthquake. 
 
Project 
 
The goal of this project is to design PINNs which can carry out large, multi-scale 
simulations e?iciently and accurately. We will extend our existing methods so that 
they can train across multiple GPUs, allowing arbitrary hardware scaling. We will also 
investigate algorithmic improvements for improving e=iciency and accuracy, such as 
adaptively learning domain decompositions and using random feature methods and 
linear solvers (see [6]) to accelerate training. 
 
A major goal is to carry out real-world multi-scale simulations, such as turbulent fluid 
simulations with high Reynolds numbers (for example, modelling the Earth’s climate), 
and inhomogeneous wave simulations (for example, modelling regional earthquakes), 
working with domain-specialist teams across Imperial.  
 
Key research questions are: how do PINNs compare to traditional numerical methods 
when carrying out multi-scale simulation? What are e=ective ways of modelling multi-
scale behaviour with PINNs? How does accuracy and convergence scale with problem 
size? 
 
For more details: please see our project page and GitHub repository. 
 
Impact 
 
E=icient and accurate multi-scale simulation methods will have a transformative 
impact on science. They will allow us to better understand the impact of complex 
interactions in physical systems, and lead to more accurate predictions and 
understanding in fields such as climate modelling, materials science, and biological 
systems.  
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https://scalable-sciml-lab.org/projects/multi-scale-simulation-with-physics-informed-neural-networks/
https://github.com/benmoseley/FBPINNs


Supervisory team 
 
Dr. Ben Moseley is an Assistant Professor in AI (Schmidt AI in Science Fellow) at the 
Department of Earth Science and Engineering and a Fellow at the Imperial I-X Centre. 
He heads the Scalable Scientific Machine Learning Lab and is an expert in scientific 
machine learning, physics-informed neural networks, neural di=erential equations, 
hybrid modelling, learned inverse algorithms, high-performance computing, 
geophysics, and planetary data science. 
 
We are open to identifying a co-supervisor or project advisor as necessary. We actively 
encourage collaboration with industry and other research groups. 
 
Research group 
 
The student will be part of the Scalable Scientific Machine Learning Lab headed by 
Dr. Ben Moseley. The lab accelerates scientific research by designing scientific machine 
learning algorithms and applying them to impactful problems across science. See our 
lab website for more information. 
 
We are a highly cross-disciplinarity team – we train our members across machine 
learning, applied mathematics, high-performance computing, and in domain-specific 
areas including geophysics, climate science, and planetary science. We collaborate 
with other groups at the Department of Earth Science and Engineering, I-X (Imperial’s AI 
initiative), other Imperial departments, and with external universities and industry 
partners. Lab members are encouraged to present and publish at high-impact 
conferences and journals. 
 
Student profile 
 
We are looking for someone who is motivated to complete a PhD in scientific machine 
learning, high performance computing, and multi-scale modelling across scientific 
domains. This is an interdisciplinary project, and we do not expect candidates to arrive 
with expertise in all areas; instead, we are looking for someone with a strong technical 
foundation, enthusiasm for interdisciplinary research, and an ability to approach 
complex problems with creativity and curiosity. 
 
Essential qualifications / experience: 

- Good Master’s degree in a relevant field (e.g. applied mathematics, physics, 
computer science, engineering, or related areas). Motivated candidates with an 
excellent bachelor’s degree and a relevant research portfolio are encouraged to 
apply 

- Completed courses in machine learning and/or applied mathematics 
- Coding proficiency in e.g. Python/ C++/ Julia/ Fortran 

Desirable qualifications / experience: 

https://scalable-sciml-lab.org/


- Experience in numerical modelling (finite di=erence, finite element, spectral 
methods, etc) 

- Understanding of scientific machine learning, in particular physics-informed 
neural networks 

- Familiarity with di=erent deep learning architectures 
- Proficiency with Python machine learning frameworks (PyTorch, JAX (with 

Equinox)) 
- Experience in scientific, HPC, GPU, and/or parallel computing 
- Relevant publications and/or industry experience are a plus 

 
Funding 
 
This project is not currently funded through a research grant and is eligible for College 
and/or Departmental scholarship funding. For more details on scholarship funding and 
deadlines see here. 
 
Apply 
 
If you are interested, please start by sending us: 

• CV (including education, and any research experience). 
• Brief motivation letter (200 – 400 words) where you should highlight how your 

experience enables you to pursue the project (can be in the email body). 
• Any additional materials that support your application (optional). 

For more details on our lab’s PhD application process see here. 
For more details on the Imperial PhD application process see here. 
 
Contact 
 
Dr. Ben Moseley: b.moseley@imperial.ac.uk  
 
References 
 
[1] Moseley (2022). Physics-informed machine learning: from concepts to real-world 
applications. PhD Thesis. 
[2] Raissi et al., (2019). Physics-informed neural networks: A deep learning framework 
for solving forward and inverse problems involving nonlinear partial di=erential 
equations. Journal of Computational Physics. 
[3] Lagaris et al., (1998). Artificial neural networks for solving ordinary and partial 
di=erential equations. IEEE Transactions on Neural Networks. 
[4] Moseley, et al., (2023). Finite basis physics-informed neural networks (FBPINNs): a 
scalable domain decomposition approach for solving di=erential equations. Advances 
in Computational Mathematics. 

https://www.imperial.ac.uk/earth-science/prosp-students/phd-opportunities/funding/
https://scalable-sciml-lab.org/work-with-us/#phd-positions
https://www.imperial.ac.uk/earth-science/prosp-students/phd-opportunities/
mailto:b.moseley@imperial.ac.uk


[5] Moseley, et al., (2024). Multilevel domain decomposition-based architectures for 
physics-informed neural networks. Computer Methods in Applied Mechanics and 
Engineering. 
[6] van Beek, J. W., Dolean, V., & Moseley, B. (2025). Local feature filtering for scalable 
and well-conditioned random feature methods. ArXiv. 


